博盈彩票 通知公告
教师风采

李劲锋


李劲锋

助理教授士生导师

微波与太赫兹技术研究所

手机:18847232164

电子邮件:jinfengcambridge@bit.edu.cn

办公地点:4教学楼212


所在学科

电子科学与技术,集成电路科学与工程

研究方向

液晶毫米波相控阵技术核反应堆热工水力传感测控

个人简历

2022/12-至今 博盈彩票集成电子/前沿交叉学院,助理教授

2021/03-2022/11 英国威尔士未来核能研究所Research Associate

2019/05-2022/11 英国帝国理工,Visiting Researcher

2019/03-2021/09 英国南安普顿大学Research Fellow

2018/06-2018/08 英国巴克莱银行信息安全总部Emerging Technologist

2014/10-2019/04 英国剑桥大学 液晶毫米波电子工程,博士

2013/09-2014/10 英国剑桥大学 核能工程,硕士

2012/09-2013/07 英国伯明翰大学 电子与电气工程学士

2009/09-2013/06 华中科技大学 电气工程及其自动化,学士

代表性论著

[1] J. Li and D. Chu, “Liquid crystal-based enclosed coplanar waveguide phase shifter for 54–66 GHz applications,” Crystals, vol. 9, 12, 650, December 2019.

[2] A. Yontem, J. Li, and D. Chu, “Imaging through a projection screen using bi-stable switchable diffusive photon sieves,” Opt. Express, vol. 26, pp. 10162–10170, April 2018.

[3] J. Li, “Rethinking Liquid Crystal Tunable Phase Shifter Design with Inverted Microstrip Lines at 1–67 GHz by Dissipative Loss Analysis,” Electronics, vol. 12, 2, 421, January 2023.

[4] J. Li, “All-optically controlled microwave analog phase shifter with insertion losses balancing,” Engineering Letters, vol. 28, no. 3, pp. 663–667, 2020.

[5] J. Li, “Challenges and opportunities for nematic liquid crystals in radio frequency and beyond,” Crystals, vol. 12, 5, 632, April 2022.

[6] L. Cai, H. Xu, J. Li, and D. Chu, “High figure-of-merit compact phase shifters based on liquid crystal material for 1–10 GHz applications,” Jpn. J. Appl. Phys., vol. 56, 011701, November 2017.

[7] J. Li, “Millimetre-wave beam steering with analog-resolution and minimised distortion based on liquid crystals tunable delay lines with enhanced signal-to-noise ratios,” Proc. SPIE, Millimetre Wave and Terahertz Sensors and Technology XIII, vol. 11541, 115410H, September 2020.

[8] J. Li, “Monte Carlo investigation of the UK’s first EPR nuclear reactor startup core using Serpent,” Energies, vol. 13, 19, 5168, October 2020.

[9] J. Li, “Vulnerabilities mapping based on OWASP-SANS: a survey for static application security testing (SAST)”, Annals of Emerging Technologies in Computing, vol. 4, no. 3, pp. 1–8, July 2020.

[10]J. Li, “Rethinking figure-of-merits of liquid crystals shielded coplanar waveguide phase shifters at 60 GHz,” J, vol. 4, pp. 444–451, August 2021.

[11]J. Li, “An efficient mixed-signal dielectric-partitioning model of liquid crystals based shielded coplanar waveguide for electronically reconfigurable delay lines design,” Proc. SPIE, Integrated Optics: Design, Devices, Systems and Applications VI, vol. 11775, 1177519, April 2021.

[12]J. Li, “Performance limits of 433 MHz quarter-wave monopole antennas due to grounding dimension and conductivity,” Annals of Emerging Technologies in Computing, vol. 6, no. 3, pp. 1–10, July 2022.

[13]J. Li, “Low-loss tunable dielectrics for millimeter-wave phase shifter: from material modelling to device prototyping,” IOP Conference Series: Materials Science and Engineering, vol. 892, 012057, 2020.

[14]J. Li, “Modelling nuclear fuel assembly with thermal-hydraulic feedback and burnup using WIMS-PANTHER-Serpent,” Journal of Physics: Conference Series, vol. 1603, 012012, 2020.

[15]J. Li, “Towards 76-81 GHz scalable phase shifting by folded dual-strip shielded coplanar waveguide with liquid crystals,” Annals of Emerging Technologies in Computing, vol. 5, no. 4, pp. 14–22, October 2021.

[16]J. Li, “60 GHz 0-360˚ passive analog delay line in liquid crystal technology based on a novel conductor-backed fully-enclosed coplanar waveguide,” 2022 IEEE 72nd Electronic Components and Technology Conference (ECTC), San Diego, USA, 2022, pp. 1841–1846.

[17]J. Li, H. Xu, and D. Chu, “Design of liquid crystal based coplanar waveguide tunable phase shifter with no floating electrodes for 60–90 GHz applications,” 46th European Microwave Conference (EuMC), London, 2016, pp. 1047–1050.

[18]J. Li, “Wideband PCB-to-connectors impedance adapters for liquid crystal-based low-loss phase shifters,” 50th European Microwave Conference (EuMC), Utrecht, 2021, pp. 546–549.

[19]J. Li, “Optically steerable phased array enabling technology based on mesogenic azobenzene liquid crystals for starlink towards 6G,” IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 2020, pp. 345–347.

[20]J. Li, “Managing 60 GHz field peaking of an liquid crystal enclosed coplanar waveguide by core edge shaping,” IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, 2020, pp. 403–405.

[21]J. Li, “Figure-of-merits mismatch in liquid crystals mmWave phase shifters,” 46th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Chengdu, 2021. pp. 1–2.

[22]J. Li, “Bias tees integrated liquid crystals inverted microstrip phase shifter for phased array feeds,” 21st IEEE International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, 2020, pp. 1–5.

[23]J. Li, “60 GHz optimised nickel-free gold-plated enclosed coplanar waveguide liquid crystal phase shifter,” IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IEEE MTT-S IMWS-AMP), Suzhou, 2020, pp. 1–3.

[24]L. Cai, H. Xu, J. Li, and D. Chu, “High FoM liquid crystal based microstrip phase shifter for phased array antennas,” IEEE 21st International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016, pp. 402–403.

[25]J. Li, “79 GHz meandering enclosed-coplanar variable delay lines in liquid crystals encapsulated within independent and shared cavities,” IEEE 27th International Symposium on Antennas and Propagation (ISAP), Sydney, Australia, 2022, pp. 457–458.

[26]J. Li, “Design and control optimisation of a novel bypass-embedded multilevel multicell inverter for hybrid electric vehicle drives,” IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Dubrovnik, 2020, pp. 382–385.

[27]J. Li, “Hybrid propulsion motor drives model based on multi-level inverters with optimised fuel economy,” IEEE Vehicular Power and Propulsion Conference (IEEE VPPC), Gijón, 2020, pp. 1–5.

[28]J. Li and X. Guo, “COVID-19 contact-tracing apps: a survey on the global deployment and challenges,” arXiv preprint arXiv:2005.03599, 2020. (被美国国家科学院院PNAS引用, 受到MIT Technology Review采访邀请)

[29]J. Li, “Novel partially-shielded coplanar waveguide with metasurfaces for liquid crystals tunable delay lines beyond 67 GHz,” 2022 IEEE Conference on Antenna Measurements & Applications (IEEE CAMA), Guangzhou, China, 2022, pp. 1–4.

[30]J. Li, “Optically inspired cryptography and cryptanalysis: a survey and research directions,” Emerging Technologies in Computing, vol. 332, LNICST, Springer, 2020, pp. 98–110.

[31]J. Khatry, J. Li, M. Margulis, M. Dahlfors, J. Corre, H. Prasser, “Light water reactor thermal hydraulics facility development in North Wales,” 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Brussels, Belgium, March 2022.

[32]X. Guo and J. Li*, “A novel twitter sentiment analysis model with baseline correlation for financial market prediction with improved efficiency,” 2019 Sixth IEEE International Conference on Social Networks Analysis, Management and Security (SNAMS), Granada, Spain, 2019, pp. 472–477.

研究成果

Cambridge Overseas Trust 奖学金获得者英国工程技术协会IET Prize获得者,开拓多种新型液晶电控/光控微波/毫米波移相器发表SCI/EI论文40余篇,英国物理学会IOP以及IEEE会议最佳论文奖曾重点参与平方公里阵列射电望远镜(SKA英国工程和自然科学研究委员会EPSRC)、英国科学与技术设施理事会STFC英国劳氏 (LR) 欧洲区域发展基金 (ERDF)威尔士热工水力学开放获取研究设施 (THOR) 国际研发项目

荣获奖项

2009年荣获 华中科技大学科技创新标兵

2013年荣获 英国工程技术协会IET Prize

2013年荣获 英国伯明翰大学本科毕业论文最高AP Jarvis Undergraduate Prize排名1

2013年荣获 华中科技大学优秀毕业生

2014年荣获 英国剑桥大学Trust奖学金

2020年荣获 IEEE会议最佳论文奖

2021年荣获 英国物理学会IOP会议最佳论文奖

学术兼职

1. IEEE第27届天线与传播国际研讨会“新传输线/结构”分会主席。

2. 3个SCI期刊编委,超过20个SCI期刊审稿评委。

3. 联合国教科文组织英国牛顿基金牛顿奖项目评审人。